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ABSTRACT

Previous learning-based interpolation methods do not consid-

er multi-scale structural information, which is generally effec-

tive for image modeling. In this paper, we design a deep net-

work based on a novel pyramid variation learning approach

with multi-scale structure modeling. An image is represent-

ed as multi-dimensional features. Besides two spatial dimen-

sions, the features include a neighboring variation dimension

where every pixel is encoded as the variation to its nearest

low-resolution pixel, and a scale dimension along which the

feature maps generated by a gradual down-sampling process

are stacked. Thus, these multi-dimensional features are con-

structed to model local dependency and multi-scale similari-

ty jointly. Inspired by this feature design, we build an end-

to-end trainable Recurrent Multi-Path Aggregation Network

(RMPAN) for image interpolation, where the scale dimen-

sion is unfolded to form a multi-path aggregation network to

apply joint filters at different scales recurrently. Location-

aware sampling layers are used in RMPAN to transform fea-

ture maps into different scales with only location changes

in each convolution path, which aggregate the context infor-

mation without resolution loss. Comprehensive experiments

demonstrate that our method leads to a superior performance

and offers new state-of-the-art benchmark.

Index Terms— Deep learning, image interpolation,

multi-scale similarity, pyramid structure, variation learning

1. INTRODUCTION

Image interpolation is a fundamental research topic in image

processing, and thus effectively supports a wide range of ap-

plications, such as video surveillance and image/video dis-

play. The goal is to reconstruct a high-resolution (HR) image

from one of its down-sampled low-resolution (LR) version-

s by inferring all missing pixels during the down-sampling

process. Various interpolation methods could be classified in-

to three groups: polynomial-based methods, geometry-guided
methods and learning-based methods.
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Polynomial-based methods, such as Bilinear and Bicubic

methods [1], generate values of missing pixels by convolving

neighboring pixels with fixed kernels. Their computational

complexity is relatively low. However, their results include

noticeable artifacts (e.g. blurring, ringing, jaggies and zipper-

ing) and unnatural representations of edges.

In order to utilize local structural information and ob-

tain visually satisfactory results, geometry guided methods
are proposed, categorized into explicit and implicit geometry

guided methods. Explicit geometry guided methods [2] detect

the geometric features, such as local covariance and edges, in

an explicit manner and adjust the interpolation lattice based

on structural directions dynamically. Implicit geometry guid-

ed methods [3–5] construct an optimization function with s-

tatistical geometric information and maximize this optimiza-

tion function to obtain an adaptive filter for the missing pixels

calculation in local regions. This soft modeling describes the

intrinsic correlations of LR and HR pixels and achieves supe-

rior performance. However, the optimization function is built

only based on information of a local region, effective knowl-

edge of external images have not been explored. There still is

room to further improve image interpolation.

Recently, the rapid development of deep neural network-

s also leads to the blooming of deep learning-based image

processing, including denoising [6], super-resolution [7–10],

video compression [11–13], rain removal [14–18]. Likewise,

learning-based methods that acquire the mapping between L-

R pixels and missing HR ones from a paired training dataset

achieve promising results with rather low computational com-

plexity. In [19,20], sparse dictionary learning, nonlocal patch

prior and autoregressive model form an integrated optimiza-

tion function to effectively make full use of both local depen-

dency and nonlocal similarity. However, without using exter-

nal information beyond the given LR image, this method only

leads to a poor performance in non-repetitive regions. In [21],

random forests project the natural image patch into different

subspaces, and then to transform the LR patch into an HR one

in the respective space. However, the subspace partition and

local regression are optimized separately, and the regression

model is a linear model, which limits its modeling capacity

for complex mappings. In [22], Yang et al. made the first

attempt to apply deep networks for image interpolation. In

this network, a pixel is encoded as the summation of its near-
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Fig. 1. The multi-dimensional pyramid variation representa-

tion is built based on the local redundancy and multi-scale

similarity. (a) Original image representation. (b) Each pix-

el is encoded as the variation value. (c) A multi-dimensional

pyramid is constructed by extending along the scale axis with

gradual down-samplings.

est LR pixel and a learned variation. In this learning process,

abundant structural correspondences in the pixel variation s-

pace are provided to facilitate inferring the lost information

caused by image degradation. However, it does not explore

a potential effective prior on image modeling – multi-scale

structural information.

In this paper, we incorporate multi-scale structural infor-

mation into the learning process and design a pyramid vari-

ation learning for image interpolation. An image is repre-

sented by multi-dimensional features. Besides spatial dimen-

sions, there are two additional dimensions – A neighboring
variation dimension where every pixel is encoded as the vari-

ation to its nearest LR pixel based on local similarity, and a

scale dimension along which the feature maps generated by

a gradual down-sampling process are stacked to model multi-

scale similarities. With this feature structure, we unfold the

scale dimension of the multi-dimensional features to build a

Recurrent Multi-Path Aggregation Network (RMPAN). We

use location-aware sampling layers and convolutional layer-

s to construct RMPAN. This location-aware sampling layer

transforms feature maps into different scales with only loca-

tion changes in each convolution path to aggregate contex-

t information without resolution loss. Experimental results

demonstrate superiority of our RMPAN.

2. FROM VARIATION LEARNING TO PYRAMID
VARIATIONAL LEARNING

In this section, we first review the variation learning briefly

proposed in [22]. Then, considering multi-scale signal struc-

ture, we further propose our pyramid variation learning.

2.1. Variation Learning
The direct end-to-end learning from the given LR pixels to the

missing HR ones suffers from three deficiencies. First, the

low-frequency parts prevent the regression model from cap-

turing the mapping relationship between low-frequency parts

and high-frequency details. Second, the priors are imposed on

the whole x instead of high frequency image signal. Third,

the structural correspondences of high frequency details are

underneath.

Then, variation image representation is developed to get

rid of the auto-correlation of x and y as well their correlation,

and to make use of more useful structural correspondences

within an image. Intuitively, as shown in Figs. 1 (a) and (b),

Based on the local redundancy, a local pixel can be decom-

posed into one of its nearest neighbors and a small difference

value, called the variation in [22] and our work. Correspond-

ingly, an HR pixel could be decomposed into the top-left LR

pixel in the corresponding 2 × 2 non-overlapping patch (for

convenience, we use 2× enlargement as example in our work

but note that, our approach is general to apply for other times

enlargement) and a difference value between the LR and HR

pixels. This changes removes much of auto-correlation with-

in the image. Formally, an HR image x is split into four parts

xtl, Δxtr, Δxbl and Δxdr.

xtl = y,

Δxtr = xtr − xtl, (1)

Δxbl = xbl − xtl,

Δxbr = xbl − xtl,

We stack the last three terms as a tensor as shown in Fig. 1 (b)

where two axises denote the locations, and another axis de-

notes the neighboring domain.

Thus, x is reformulated as

x = xε +Δx, (2)

where xε signifies the top-left pixel (in fact, a nearest LR pix-

el) in every 2×2 non-overlapped patch. For convenience, Δx
is defined as Eqn. (1) with Δxtl = 0. In image interpolation,

xε is given (equivalent to y), thus we can aim to estimate Δx
and leads to a new learning way:

x = fr(y) + xε. (3)

fr(·) is the learned inverse recovery process to estimate x−xε

from y.

2.2. Pyramid Variation Learning

The above-mentioned part goes through local dependency

modeling, we then aim to model the multi-scale similarity.

An image pyramid is built on a gradual down-sampling oper-

ation with a small factor. This repetitive operation constructs

more similar patches because many typical structures are self-

similar at different scales, which inspires us to extend previ-

ous 3D representation into a 4D one, with a new axis to sig-

nify the scale. Then, the feature representation in Fig. 1 (b)

becomes Fig. 1 (c). And Eqn. (3) is further extended to a

multi-scale form:

x =

S∑

i=1

f i
s(y) + y, (4)
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(a) (b) (c) (d)

Fig. 2. Patch repetitiveness of a single image in two feature

space. (a) Original image xtl. (b) Difference image Δxtr.

(c)-(d) The heat maps for patch repetitiveness of (b) in the

variation space in Eqn. (3) and the pyramid variation space in

Eqn. (4), respectively. Red signifies high values, Blue signi-

fies low values.

where f i
s(·), i = 1, 2, ..., S are the learned inverse processes

to estimate x− y based on the whole multi-scale pyramid of

y. S is the number of scales in our model.

Compared with Eqn. (3), the novel proposed image rep-

resentation Eqn. (4) has more structural correspondences.

From the perspective of structural correspondences on their

patch repetitiveness, the potential redundancy within an im-

age is measured. We calculate it via mean squared er-

ror (MSE) for the most similar patches of each 5×5 patch. We

first search the top-10 similar patches based on MSEs across

the whole image for each patch. Then, the average MSE is

converted into a probability based on Gaussian function. As

shown in Fig. 2, the subfigures (c) and (d) are the heat maps

for the patch repetitiveness of (b) – the difference image – in

the variation space in (3) and that in the pyramid variation s-

pace in (4), respectively. In these heat maps, the colors from

red to blue signify the decrease of patch repetitiveness values.

Compared with (c), regions in (d) significantly increase the

patch repetitiveness. Among all representations in Fig. 2, our

proposed pyramid variation model presents the most frequent

patch repetitiveness.

3. RECURRENT MULTI-PATH AGGREGATION
NETWORK FOR IMAGE INTERPOLATION

In this section, we turn the proposed pyramid variation learn-

ing into a novel recurrent multi-path aggregation network

(RMPAN) for image interpolation.

3.1. The Overall Network Structure

The traditional convolutional neutral network (CNN) is capa-

ble to handle at most 3D dimension representation, thus we

need to seek a solution to model our 4D representation. To

address the problem, we unfold the scale axis to build a re-

current multi-path aggregation network (RMPAN). Each path

aims to model the representation at a certain scale as shown in

Fig. 3. To model the first three dimensions, our RMPAN takes

a recurrent convolutional structure that performs a progressive

signal recovery. The features are transformed and enhanced

progressively. In each recurrence, the multi-path convolution-

s apply multi-scale filter operations on the image pyramid.

For each path, we down-sample the feature maps by a certain

Fig. 4. Illustration for location-aware sampling layers. The

up-sampling layer combines small feature maps into a larger

one while the down-sampling layer splits a large feature map

into several small ones.

scale via the proposed location-aware down-sampling, then

perform two successive convolutions, and finally up-sample

the feature maps via the location-aware up-sampling. With

this coupled location-aware sampling operations (layers), we

could effectively utilize a joint filter operation at a certain s-

cale without resolution loss. The filtered results of multi-path

convolutions are aggregated by a summation. After that, the

variation map is reconstructed by the last convolution on the

aggregated results. The proposed RMPAN combines the pix-

el variation and the corresponding top-left pixel in each non-

overlapped patch. Finally, the HR image is reconstructed by

a location-aware up-sampling layer. The layer transforms the

pixels of four maps (LR image and HR sub-images) into the

HR pixel lattice.

3.2. Pyramid Variation Learning Network

Specifically, we illustrate each part in formulation:

Feature extraction and reconstruction. The first convolu-

tion extracts features f1in from the input LR image, and the

penultimate convolution layer generates the HR difference

maps from features fKout. The relation between f1in, fKout and

the other part of the network is given as follows,

f1in = max(0,Wextract ∗ y + bextract), (5)

[Δxtl,Δxtr,Δxdl,Δxdr] = Wrect ∗ fKout + brect, (6)

where y denotes the input LR image, and Wextract and bextract

are the filter parameter and basis of the first convolution layer

– feature extraction layer, respectively. As shown in Fig. 3,

Δxtl,Δxtr,Δxdl and Δxdr denote the estimated top-left, top-

right, down-left and down-right values in every 2 × 2 non-

overlapping patch by the penultimate reconstruction layer.

Wrect and brect are the filter parameter and basis of the re-

construction layer. Δxtr,Δxdl and Δxdr are then combined

with the LR image via addition to produce the corresponding

HR pixels in these locations, and Δxtl is equivalent to y based

on the location correspondences in the degradation.

Location-aware down-sampling and up-sampling. To filter

at different scales, a specialized network structure as shown

in Fig. 4 is used to transform the feature map into different

scales without loss of original information. For 2 times down-

sampling, the features are divided into 2× 2 non-overlapping
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Fig. 3. The architecture of our proposed Recurrent Multi-Path Aggregation Network (RMPAN) that performs pyramid variation

learning for image interpolation.

patches, and the four pixels in every patch are extracted in-

to a feature map, respectively. Then, the four feature maps

are stacked as a new feature map. For 2 times up-sampling,

everything goes in a reverse way. The location-aware down-

sampling layer works as

fkspin,s,p(�i× s�, �j × s�, c) = fkin(i, j, c), (7)

where �·� denotes the floor operation, s signifies the scale

of one convolution path, p signifies the group of the output

number. i and j denote the spatial location and c denotes the

channel number. ‘spin’ denotes the input features from the

split process. p is calculated as follows,

p =(i− �i× s� − 1)× 1/s+ (j − �j × s�) + 1. (8)

Similarly, the location-aware up-sampling layer works as fol-

lows,

fkconcat,s(i, j, c) = fkspout,s,p(�i× s�, �j × s�, c), (9)

where ‘spout’ denotes the output features after processing the

split results and ‘concat’ signifies that several feature maps

are concatenated into one. By coupling the down-sampling

and up-sampling layers with different s, the network could

filter at different scales without sacrificing the resolution loss.

For s = 1, we have

fkspin,1,1(i, j, c) = fkin(i, j, c), (10)

fkconcat,1(i, j, c) = fkspout,1,1(i, j, c). (11)

Progressive feature enhancement. Let fkin signify the input

feature map at the k-th recurrence. The output feature map at

the k-th recurrence, fkout, is updated as follows,

fkout =
∑

s

max (0,Ms) + fkin,

Ms =
∑

p

fkconcat,s,p, (12)

fkspout,s,p =
(
Wk

spmid,s,p ∗ fkspmid,s,p + bk
spmid,s,p

)
,

fkspmid,s,p = max
(
0,Wk

spin,s,p ∗ fkspin,s,p + bk
spin,s,p

)
,

where fkin = fk−1
out denote the output features by the at (k−1)-

th recurrence. Wk
spin,s,p and bk

spin,s,p denote the filter parame-

ter and basis of the first convolution in the p-th path at scale s
in the k-th iteration. Wk

spmid,s,p and bk
spmid,s,p signify the fil-

ter parameter and basis of the second convolution in the p-th

path at scale s in the k-th iteration. The by-pass connection

forwards fkin to fkout. The feature map fkout can be regarded as

the inferred k-th layer details of the feature maps.

Network training. Let F(·) represent the learned network

that recovers the HR image x based on the given LR image

y. We use Θ to collectively signify all the parameters of the

network as follows,

Θ = {Wextract,bextract,Wspin,bspin,

Wspmid,bspmid,Wrect,brect} . (13)

Given n pairs of HR and LR images {(xi,yi)}ni=1 for net-

work training, we apply the following joint MSE to train the

network parameterized by Θ:

L(Θ) =
1

n

n∑

i=1

(||F (yi,xi;Θ)− xi||2. (14)

4. EXPERIMENTAL RESULTS

Experimental Setting. The RMPAN is compared with

conventional polynomial-based Bicubic interpolation method

and seven state-of-the-art interpolation algorithms, including

soft autoregressive interpolation (SAI) [4], similarity mod-

ulated block estimation (SMBE) [23], consistent segmen-

t adaptive gradient angle interpolation (CSAGA) [24], sparse
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(a) HR (b) BC (c) SAI (d) AGSI (e) SMBE (f) NARM (g) FIRF (h) RMPAN

Fig. 5. Visual comparison between different algorithms. The top panel: Bicycle in Set18. The bottom panel: Lighthouse in

Set15.

Table 1. The average PSNR (dB) Results on Set15, Set18 and Urban12.
Image Bicubic SAI SMBE CSAGA SME AGSI NARM FIRF VLN RMPAN

Set15 28.81 29.19 29.32 29.20 29.26 29.06 29.47 29.81 30.23 30.55
Set18 28.82 29.44 29.47 29.29 29.35 29.33 29.75 30.11 30.63 30.84

Urban12 23.29 23.86 24.01 23.96 23.94 23.88 23.98 24.97 26.12 26.54

mixing estimators [25] (SME), adaptive general scale interpo-

lation (AGSI) [5], nonlocal autoregressive modeling (NAR-

M) [19], fast interpolation via random forest (FIRF) [21], and

variational learning network (VLN) [22].

We compare our RMPAN with recent interpolation meth-

ods on three benchmark datasets: Interp15, Interp18 and Ur-
ban12, with the scaling factor 2. The three datasets contain

15, 18 and 12 images respectively. Among them, the images

in Interp15 are from the Kodak and USC-SIPI image databas-

es. Interp18 is used for the evaluation in [21]. Urban12 in-

cludes 12 urban landscapes images from Urban [26] dataset,

that contains the images with many regular repetitive building

patterns.

The input LR images are generated by down-sampling the

original HR images with the scaling factor 2. Then, different

interpolation methods are used to interpolate HR images from

the input LR images. Peak Signal-to-Noise Ratio (PSNR) and

Structural SIMilarity index (SSIM) [27] are utilized as the cri-

teria to evaluate the experimental results.

We trained our RMPAN with a training set including 591

images, consisting of 500 images in BSDS500 [28] and 91

images in [29]. We crop the images into 40 × 40 input and

80 × 80 output patches. Around 500,000 sub-images are

generated by using a stride of 20 with the data augmenta-

tion of flipping and rotation. Our RMPAN was trained on

Caffe platform 1 via stochastic gradient descent (SGD) with

standard back-propagation. The momentum is set to 0.9, the

initial learning rate is set to 0.001 for front-end layers and

0.00001 for the penultimate layer (before the fixed location

up-sampling layer) during the training process. The learn-

ing rate is dropped by a factor of 10 when reaching 250,000

1http://caffe.berkeleyvision.org/

iterations. The batch size is set to 64. At most 300,000 back-

propagations are allowed, which spent about 7 hours when

training on a single Titan GTX 1080.

Objective Evaluation. The objective evaluation results are

shown in Tables 1-2. The results clearly show that our method

consistently outperforms other methods with significant per-

formance gains. For Set15, our RMPAN achieves better per-

formance than VLN with gains of 0.22dB and 0.0048 in P-

SNR and SSIM, respectively. For Set18 and Urban12, larger

performance gains are achieved, which are 0.21dB and 0.42d-

B in PSNR and 0.0031 and 0.0084 in SSIM, respectively.

Subjective Evaluation. We also present visual results of dif-

ferent methods in Fig. 5. The results clearly demonstrate the

significant superiority of our RMPAN to other methods. It is

observed that, Bicubic generates rather blurred results. Three

AR-flavoured methods– SAI, AGSI and SMBE– improve the

visual quality of their results significantly by increasing their

adaptivity to model local image signals. However, artifact-

s and blurred results, such as the zigzag artifacts in the very

thin line in the top panel of Fig. 5, are presented. NARM ob-

tains better results on repetitive signal patterns because of its

non-local similarity modeling. FIRF achieves very good vi-

sual quality, with the general dependency learned from a very

large dataset. However, the intrinsic ill-posed nature of the

problem caused by the image degradation also makes FIRF

miscalculate HR signal, such as the wrong pattern prediction

in the bottom panel of Fig. 5. By considering external general

dependency and internal image pyramid priors, our RMPAN

obtains better visual quality than other state-of-the-art meth-

ods. The superiority is obviously witnessed in regions of the

axises in the top panel of Fig. 5, and the repetitive patterns of

wall in the bottom panel of Fig. 5.
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Table 2. The average SSIM Results on Set15, Set18 and Urban12.
Image Bicubic SAI SMBE CSAGA SME AGSI NARM FIRF VLN RMPAN

Set15 0.8730 0.8784 0.8780 0.8782 0.8788 0.8743 0.8825 0.8831 0.8945 0.8993
Set18 0.8683 0.8765 0.8765 0.8757 0.8742 0.8733 0.8815 0.8829 0.8933 0.8964

Urban12 0.7977 0.8171 0.8192 0.8191 0.8141 0.8126 0.8235 0.8441 0.8797 0.8881

5. CONCLUSIONS
In this paper, we propose a novel multi-dimensional pyramid

variation image representation and develop a recurrent multi-

path aggregation network (RMPAN). The representation fo-

cuses on the correlation between high-frequency image sig-

nals, imposes priors directly on the variation between the LR

and HR images and includes a number of structural corre-

spondences. Owning to these benefits, the pyramid variation

learning and RMPAN are constructed for image interpolation.

Making use of both local and nonlocal similarities jointly, the

network applies joint filter operations recurrently, leading to a

superior performance than previous methods and offering the

new state-of-the-art.
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